Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.082
Filtrar
1.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642182

RESUMO

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Assuntos
Brassica napus , Plântula , Plântula/genética , Sementes/genética , Cotilédone/genética , Lipídeos , Aminoácidos/metabolismo , Brassica napus/metabolismo
2.
Plant Cell Rep ; 43(5): 131, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656568

RESUMO

KEY MESSAGE: The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Plântula , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Açúcares/metabolismo , Sacarose/metabolismo , Glucose/metabolismo , Estiolamento , Metabolismo dos Carboidratos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotilédone/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/genética
3.
Physiol Plant ; 176(2): e14232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450746

RESUMO

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , Sacarose
4.
Plant Cell Rep ; 43(2): 56, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319432

RESUMO

KEY MESSAGE: This is the first report showing anthocyanin accumulation in the soybean cotyledon via genetic transformation of a single gene. Soybean [Glycine max (L.) Merrill] contains valuable components, including anthocyanins. To enhance anthocyanin production in Korean soybean Kwangankong, we utilized the R2R3-type MYB gene (IbMYB1a), known for inducing anthocyanin pigmentation in Arabidopsis. This gene was incorporated into constructs using two promoters: the CaMV 35S promoter (P35S) and the ß-conglycinin promoter (Pß-con). Kwangankong was transformed using Agrobacterium, and the presence of IbMYB1a and Bar transgenes in T0 plants was confirmed through polymerase chain reaction (PCR), followed by gene expression validation. Visual inspection revealed that one P35S:IbMYB1a and three Pß-con:IbMYB1a lines displayed seed color change. Pß-con:IbMYB1a T1 seeds accumulated anthocyanins in cotyledon outer layers, whereas P35S:IbMYB1a and non-transgenic black soybean (Cheongja 5 and Seum) accumulated anthocyanins in the seed coat. During the germination and growth phase, T1 seedlings from Pß-con:IbMYB1a lines exhibited anthocyanin pigmentation in cotyledons for up to 1 month without growth aberrations. High-performance liquid chromatography confirmed cyanidin-3-O-glucoside as the major anthocyanin in the Pß-con:IbMYB1a line (#3). We analyzed the expression patterns of anthocyanin biosynthesis genes, chalcone synthase 7,8, chalcone isomerase 1A, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, dihydroflavanol reductase 1, dihydroflavanol reductase 2, anthocyanidin synthase 2, anthocyanidin synthase 3, and UDP glucose flavonoid 3-O-glucosyltransferase in transgenic and control Kwangankong and black soybean (Cheongja 5 and Seum) seeds using quantitative real-time PCR. We conclude that the induction of gene expression in transgenic plants in comparison with Kwangankong was attributable to IbMYB1a transformation. Notably, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, and dihydroflavanol reductase 1 were abundantly expressed in black soybean seed coat, distinguishing them from transgenic cotyledons.


Assuntos
Arabidopsis , Flavanonas , Soja/genética , Antocianinas , Cotilédone/genética , Pigmentação/genética , Oxigenases de Função Mista
5.
Theor Appl Genet ; 137(3): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381194

RESUMO

KEY MESSAGE: This study reported the identification and validation of novel QTL conferring coleoptile length in barley and predicted candidate genes underlying the largest effect QTL based on orthologous analysis and comparison of the whole genome assemblies for both parental genotypes of the mapping population. Coleoptile length (CL) is one of the most important agronomic traits in cereal crops due to its direct influence on the optimal depth for seed sowing which facilitates better seedling establishment. Varieties with longer coleoptiles are preferred in drought-prone areas where less moisture maintains at the top layer of the soil. Compared to wheat, genetic study on coleoptile length is limited in barley. Here, we reported a study on detecting the genomic regions associated with CL in barley by assessing a population consisting of 201 recombinant inbred lines. Four putative QTL conferring CL were consistently identified on chromosomes 1H, 5H, 6H, and 7H in each of the trials conducted. Of these QTL, the two located on chromosomes 5H and 6H (designated as Qcl.caf-5H and Qcl.caf-6H) are likely novel and Qcl.caf-5H showed the most significant effect explaining up to 30.9% of phenotypic variance with a LOD value of 15.1. To further validate the effect of this putative QTL, five pairs of near isogenic lines (NILs) were then developed and assessed. Analysis of the NILs showed an average difference of 21.0% in CL between the two isolines. Notably, none of the other assessed morphological characteristics showed consistent differences between the two isolines for each pair of the NILs. Candidate genes underlying the Qcl.caf-5H locus were also predicted by employing orthologous analysis and comparing the genome assemblies for both parental genotypes of the mapping population in the present study. Taken together, these findings expand our understanding on genetic basis of CL and will be indicative for further gene cloning and functional analysis underly this locus in barley.


Assuntos
Hordeum , Hordeum/genética , Cotilédone/genética , Sementes , Produtos Agrícolas , Plântula
6.
Food Funct ; 15(2): 953-966, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38175573

RESUMO

There is increasing interest in including pulse proteins into food products due to their nutrient-rich and sustainable character. However, little is known regarding the consequences of different extraction approaches on the pulse protein structure and the subsequent protein (micro)structural organization and protein digestion kinetics. Therefore, three green pea protein extracts were created: (i) cooking followed by cotyledon cell isolation, (ii) alkaline extraction followed by isoelectric precipitation, or (iii) salt extraction, and compared to the original pea flour as well as to sodium caseinate. The results showed that encapsulated, denatured protein inside pea cotyledon cells presented the (s)lowest digestion, while accessible and more native protein (e.g., pea flour, pea protein salt extract) presented much faster and higher digestion. Moreover, the alkali extracted pea protein was denatured to some extent, significantly lowering in vitro digestion kinetics. In the second part, three different in vitro approaches were applied to digest the salt extracted pea protein. Semi-dynamic gastric digestion approaches simulate in vivo conditions more closely which especially impacted the rate of digestion.


Assuntos
Proteínas de Ervilha , Proteínas de Ervilha/metabolismo , Digestão , Culinária , Cotilédone/metabolismo , Farinha/análise
7.
Sci Signal ; 17(817): eadf7318, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166030

RESUMO

The opening of the embryonic leaves (cotyledons) as seedlings emerge from the dark soil into the light is crucial to ensure the survival of the plant. Seedlings that sprout in the dark elongate rapidly to reach light but keep their cotyledons closed. During de-etiolation, the transition from dark to light growth, elongation slows and the cotyledons open. Here, we report that the transcription factor ACTIVATING FACTOR1 (ATAF1) participates in de-etiolation and facilitates light-induced cotyledon opening. The transition from dark to light rapidly induced ATAF1 expression and ATAF1 accumulation in cotyledons. Seedlings lacking or overexpressing ATAF1 exhibited reduced or enhanced cotyledon opening, respectively, and transcriptomic analysis indicated that ATAF1 repressed the expression of genes associated with growth and cotyledon closure. The activation of the photoreceptor phytochrome A (phyA) by far-red light induced its association with the ATAF1 promoter and stimulation of ATAF1 expression. The transcription factor ELONGATED HYPOCOTYL5 (HY5), which is also activated in response far-red light, cooperated with phyA to induce ATAF1 expression. ATAF1 and HY5 interacted with one another and cooperatively repressed the expression of growth-promoting and cotyledon closure genes. Together, our study reveals a mechanism through which far-red light promotes cotyledon opening.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Repressoras/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069387

RESUMO

Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 µM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.


Assuntos
Cotilédone , Plântula , Plântula/metabolismo , Cotilédone/metabolismo , Zea mays/metabolismo , Serotonina/metabolismo , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo
9.
Planta ; 259(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108903

RESUMO

MAIN CONCLUSION: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.


Assuntos
Soja , Nematoides , Animais , Soja/genética , RNA Guia de Sistemas CRISPR-Cas , Bioensaio , Cotilédone , Nematoides/genética
10.
J Agric Food Chem ; 71(49): 19879-19887, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018797

RESUMO

Seed germination is a vital process in plant development involving dynamic biochemical transformations such as lipid metabolism. However, the spatial distribution and dynamic changes of lipids in different seed compartments during germination are poorly understood. In this study, we employed liquid chromatography/mass spectrometry (LC/MS)-based lipidomics and MALDI mass spectrometry imaging (MSI) to investigate lipid changes occurring in the cotyledon and plumule of mung bean seeds during germination. Lipidomic data revealed that the germination process reduced the levels of many glycerolipids (e.g., triglyceride) and phosphatidylglycerols (e.g., phosphatidylcholine) while increased the levels of lysophospholipids (e.g., lysophosphatidylcholine) in both the cotyledon and plumule. Sphingolipids (e.g., sphingomyelin) displayed altered levels solely in the plumule. Sterol levels increased in the cotyledon but decreased in the plumule. Further imaging results revealed that MALDI-MSI could serve as a supplement and validate LC-MS data. These findings enhance our understanding of the metabolic processes underlying seedling development, with potential implications for crop improvement and seed quality control.


Assuntos
Fabaceae , Vigna , Cotilédone/metabolismo , Germinação , Lipidômica , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/metabolismo
11.
BMC Biol ; 21(1): 247, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936151

RESUMO

BACKGROUND: Leptosphaeria maculans "brassicae" (Lmb) and Leptosphaeria biglobosa "brassicae" (Lbb) make up a species complex involved in the stem canker (blackleg) disease of rapeseed (Brassica napus). They coinfect rapeseed together, from the early stage of infection on leaves to the final necrotic stage at the stem base, and both perform sexual crossings on plant residues. L. biglobosa is suggested to be a potential biocontrol agent against Lmb, but there has been no mechanistic investigation of the different types of interactions that may occur between the plant and the two fungal species. RESULTS: We investigated the bi- or tripartite interaction mechanisms by (i) confronting Lmb and Lbb in culture conditions or during cotyledon infection, with different timing and/or spore concentration regimes, (ii) performing RNA-Seq experiments in vitro or on the kinetics of infection of cotyledons infected by Lmb and/or Lbb to evaluate the transcriptomic activity and the plant response when both fungal species are inoculated together. Lbb infection of B. napus cotyledons was typical of a necrotrophic behavior, with a very early setup of one pathogenicity program and very limited colonization of tissues. This contrasted with the complex succession of pathogenicity programs of the hemibiotroph Lmb. During simultaneous co-infection by both species, Lmb was strongly impacted in its growth and transcriptomic dynamics both in vitro and in planta, while Lbb was unaffected by the presence of Lmb. However, the drastic inhibition of Lmb growth by Lbb was ineffective in the case of delayed inoculation with Lbb or a lower amount of spores of Lbb compared to Lmb. CONCLUSIONS: Our data suggest that Lmb growth inhibition by Lbb is the result of a combination of factors that may include competition for trophic resources, the generation by Lbb of an environment unsuitable for the lifecycle of Lmb or/and the effect on Lmb of plant defense responses induced by Lbb. It indicates that growth inhibition occurs in very specific conditions (i.e., co-inoculation at the same place of an equal amount of inoculum) that are unlikely to occur in the field where their coexistence does not prevent any species from completing their life cycle.


Assuntos
Ascomicetos , Brassica napus , Ascomicetos/genética , Brassica napus/microbiologia , Perfilação da Expressão Gênica , Transcriptoma , Cotilédone/microbiologia , Doenças das Plantas/microbiologia
12.
Sci Rep ; 13(1): 17867, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857703

RESUMO

The effect of the extract obtained by Ultrasound-Assisted Extraction (UAE) from green macroalga Cladophora glomerata on the germination and early growth of three narrow-leaved lupin varieties (cv. Homer, Jowisz, and Tytan) was examined. The seeds of these varieties came from five growing seasons (2015-2019) and this was their successive propagation stage. In total, 45 groups were tested. Narrow-leaved lupin like other legumes have a beneficial effect on the physical properties and fertility of the soil. Its high nutritive value makes it suitable for the production of valuable fodder. The algal extract, which was screened for the content of active compounds responsible for their biostimulant effect was applied in two concentrations: 10 and 20%. The germination percentage, root, hypocotyl, epicotyl length and chlorophyll content in cotyledons were evaluated at the end of the experiment. The 20% extract stimulated the growth of seedlings of all lupin cultivars better than the 10% application. The Jowisz variety deserves special attention, as it has the longest root system of seedlings.


Assuntos
Lupinus , Sementes , Cotilédone , Plântula , Germinação , Extratos Vegetais/farmacologia
13.
Mol Biol Rep ; 50(11): 9353-9366, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819494

RESUMO

BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming. METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants. CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.


Assuntos
Sistemas CRISPR-Cas , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Oryza/metabolismo , Cotilédone/genética , Técnicas de Cultura de Tecidos/métodos , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética
14.
Proc Natl Acad Sci U S A ; 120(42): e2306655120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816057

RESUMO

Mounting evidence suggests that plants engage complex computational processes to quantify and integrate sensory information over time, enabling remarkable adaptive growth strategies. However, quantitative understanding of these computational processes is limited. We report experiments probing the dependence of gravitropic responses of wheat coleoptiles on previous stimuli. First, building on a mathematical model that identifies this dependence as a form of memory, or a filter, we use experimental observations to reveal the mathematical principles of how coleoptiles integrate multiple stimuli over time. Next, we perform two-stimulus experiments, informed by model predictions, to reveal fundamental computational processes. We quantitatively show that coleoptiles respond not only to sums but also to differences between stimuli over different timescales, constituting evidence that plants can compare stimuli-crucial for search and regulation processes. These timescales also coincide with oscillations observed in gravitropic responses of wheat coleoptiles, suggesting shoots may combine memory and movement in order to enhance posture control and sensing capabilities.


Assuntos
Cotilédone , Gravitropismo , Gravitropismo/fisiologia , Modelos Biológicos , Triticum , Movimento
15.
Food Microbiol ; 116: 104367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689428

RESUMO

Microgreens, the immature plants harvested after a few weeks of growth, are perceived as a heathy, nutritious food ingredient but may be susceptible to colonisation by human pathogens including Shiga-toxigenic Escherichia coli (STEC). Some microgreen cultivars accumulate anthocyanins or secrete essential oils which, when extracted or purified, have been reported to inhibit bacterial growth. Therefore, the impact of anthocyanins on bacterial colonisation by STEC (Sakai) was compared for three species that have pigmented cultivars: basil (Ocimum basilicum L.), cabbage (Brassica oleracea L.) and mustard greens (Brassica juncea L.). Inoculation with low concentrations of STEC (Sakai) (3 log10 colony forming units/ml (CFU/ml)) during seed germination resulted in extensive colonisation at the point of harvest, accumulating to âˆ¼ 8 log10 CFU/g FW in all cultivars. Bacterial colonies frequently aligned with anticlinal walls on the surface of epidermal cells of the cotyledons and, in basil, associated with peltate and capitate gland cells. Crude lysates of pigmented and non-pigmented basil cultivars had no impact on STEC (Sakai) growth rates, viability status or biofilm formation. Anthocyanins are located within plant vacuoles of these microgreen cultivars and did not affect colonisation by STEC (Sakai) and pigmentation therefore cannot be considered as a controlling factor in bacterial interactions.


Assuntos
Antocianinas , Ocimum basilicum , Humanos , Mostardeira , Cotilédone , Pigmentação
16.
Plant Cell Physiol ; 64(11): 1356-1371, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37718531

RESUMO

The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Cotilédone/genética , Cotilédone/metabolismo , Microtúbulos/metabolismo , Folhas de Planta/metabolismo
17.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738410

RESUMO

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula/metabolismo , Cotilédone/metabolismo , Estiolamento , Glucose/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Braz J Biol ; 83: e273906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436193

RESUMO

Studies on the germination and establishment of plants are key pieces to understanding the reproductive success of plants. This work aimed to describe in vitro germination and reserve mobilization in the bromeliad Vriesea friburgensis through morphological, histochemical, and biochemical analysis. The conditions used in this study for the in vitro germination are adequate. From the third day of in vitro inoculation, a uniform germination of 98% was obtained, exhibiting a high physiological quality of the seeds and a high potential to produce seedlings (94%). There is early reserve mobilization, which began in the imbibition phase. The accumulated reserves in the endosperm cytoplasm are degraded by hydrolytic enzymes provided by the aleurone layer. It is possible that compounds in the cell walls of the endosperm contribute to a lesser extent in mobilization. Additionally, it was observed that starch accumulation in the cotyledon increases when the seedling has formed. Results from this study provide insights for future studies on ecology, seed technology, and conservation in this species. This study contributes to the limited knowledge of the dynamics of reserves during germination and seedling establishment in Bromeliaceae. To the best of our knowledge, this is the first study with this approach in the genus Vriesea.


Assuntos
Bromeliaceae , Germinação , Germinação/fisiologia , Plântula/fisiologia , Sementes/fisiologia , Cotilédone/metabolismo
19.
Transgenic Res ; 32(4): 339-349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37318700

RESUMO

Genetic modification of rice is mainly carried out by Agrobacterium-mediated transformation of callus accompanied by tissue culture. It is time consuming, laborious and unapplicable for cultivars unable to induce callus. In this study, we have reported a novel gene transfer protocol that involves pulling out primary leaf from coleoptile and injection of Agrobacterium culture into the empty channel. Out of 25 plants survived after injection of Agrobacterium tumefaciens EHA105 culture harboring pCAMBIA1301-RD29A-AtDREB1A, 8 T0 plants revealed the expected size of around 811 bp corresponding to AtDREB1A gene and Southern blotting analysis on 18 T1 plants suggested introgression of AtDREB1A. 3 T2 lines (7-9, 12-3, 18-6) exhibited accumulation of free proline and soluble sugars, yet increase of chlorophyll content, but decrease of electrolyte leakage and methane dicarboxylic aldehyde under cold stress condition at the vegetative growth stage. Yield components investigation on T2 lines showed earlier heading date and no yield loss compared to wild type plants grown under normal condition. GUS expression analysis and integrated transgene detection in T0 and T1 plants followed by evaluation of cold stress tolerance in T2 lines suggest the advantage of this in planta transformation protocol to obtain transgenic rice.


Assuntos
Oryza , Oryza/genética , Cotilédone , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética , Transgenes , Transformação Genética
20.
Carbohydr Polym ; 314: 120949, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173051

RESUMO

Intact cellular powders have gained attention as a functional ingredient due to their lower glycemic response and potential benefits in colon. The isolation of intact cells in the laboratory and pilot plant settings is mainly achieved through thermal treatment with or without the use of limited salts. However, the effects of salt type and concentration on cell porosity, and their impact on the enzymic hydrolysis of encapsulated macro-nutrients such as starch, have been overlooked. In this study, different salt-soaking solutions were used to isolate intact cotyledon cells from white kidney beans. The use of Na2CO3 and Na3PO4 soaking treatments, with high pH (11.5-12.7) and high amount of Na ion (0.1, 0.5 M), greatly improved the yield of cellular powder (49.6-55.5 %), due to the solubilization of pectin through ß-elimination and ion exchange. Intact cell walls serve as a physical barrier, significantly reducing the susceptibility of cell to amylolysis when compared to white kidney bean flour and starch counterparts. However, the solubilization of pectin may facilitate enzyme access into the cells by enlarging cell wall permeability. These findings provide new insights into the processing optimization to improve the yield and nutritional value of intact pulse cotyledon cells as a functional food ingredient.


Assuntos
Cotilédone , Amido , Amido/metabolismo , Cotilédone/metabolismo , Cinética , Cloreto de Sódio/metabolismo , Digestão , Pectinas/metabolismo , Culinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...